

B113

等価線形化手法による応答評価	
等価質量:	M_{eq} =6753 t × 0.8=5402 t=52,940kN
等価高さ:	$H_{\rm eq}$ =55m × 0.67=37m
等価質量と固有周期より、等価一	質点系の等価剛性は;
	$K_{f} = M_{eq} \times (2 \pi T)^{2} = 53.2 \text{ kN/mm}$
設計用変位・速度・加速度応答ス・	ペクトル(長周期領域, h=0.02)を下記で表すと、
$S_D =$	$0.825T/\pi$ (m), $S_V = 1.65$ (m/s), $S_A = 3.3\pi/T$ (m/s ²),
等価一質点系の応答加速度は;	$a^{(0)} = 3.3 \pi T = 5.18 \text{ m/s}$
ベースシアは;	$Q^{(0)} = m_{eq} a^{(0)} = 27982 \text{ kN}$
等価一質点系の応答変位は;	$u^{(0)} = Q^{(0)}/K_f = 525 \text{mm} (=0.825 T/p)$
最大応答層間変形角は;	$q^{(0)} = u^{(0)} / H_{eq} = 0.014 = 1/70$
	(基準階変位は 3600/70=53mm)

(2)	投入	、量の	設定	Farget yi	eld stre	ngth			
高さ	方向の	制振部	材の配置	Distribu	tions of d	ampers			
	・各層の	ダンパー豊	<u>性率 # di</u> は	— 定 (µ di =	5.0)				
	・目標層 Distribu	間変形角(ting elasto	1/150rad)で -plastic damp	の層せん断 ers along A	力係數<i>Ci</i>(i distributio	D分布形状 ns at target	がAi分布 とす story drift ang	なるように sles	置
	表	4.2.5 各月	層の制振部	材の諸元(層のダン	パー強度。	とダンパー開	性)	
-	階	目標 <i>ui</i> (mm)	<i>Kfi</i> (kN/mm)	<i>Qfi</i> (kN)	<i>Qdyi</i> (kN)	Ci / Ai	<i>Kdi</i> (kN/mm)	µ di	
	10	26.7	413	11,023	1,456	0.578	273	5.0	
	9	26.7	447	11,907	6,240	0.578	1,170	5.0	
	8	26.7	486	12,953	9,990	0.578	1,873	5.0	
	7	26.7	529	14,093	12,960	0.578	2,430	5.0	
	6	26.7	679	18,112	12,512	0.578	2,346	5.0	
	5	26.7	708	18,881	14,777	0.578	2,771	5.0	
	4	26.7	733	19,540	16,649	0.578	3,122	5.0	
	3	26.7	819	21,837	16,378	0.578	3,071	5.0	
	2	26.7	878	23,412	16,336	0.578	3,063	5.0	
	1	33.3	879	29,303	11.507	0.578	1,726	5.0	
								制振構道	の計画

	(a) I	を屈 れ Distrib	拘束 oution 表 4.2.	ブレ n of H 7 各期	。 一 う RBs の変	スを:	採用	する	- スの	諸元		- duta		
階	Nd' (kN)	<i>Kd'</i> (kN/mm)	8 dy (тт)	採用7 降伏軸 カタイプ	パレース <i>A</i> P (mm2)	L (mm)	<i>A d</i> (mm ²)	LP (mm)	Lp/L	K₽ (kN/mm)	ЩР	<i>Nd‴</i> (kN)	<i>Kd″</i> (kN/mm)	µ d″
10	859	190	4.5	1,000	4,532	7,547	8,268	1,863	0.25	501	9.9	1,020	225	5.0
9	1,840	407	4.5	2,000	8,896	7,547	16,230	1,863	0.25	983	9.9	2,002	443	5.0
8	1,963	434	4.5	2,000	8,896	7,547	16,230	1,863	0.25	983	9.9	2,002	443	5.0
7	1,910	422	4.5	2,000	8,896	7,547	16,230	1,863	0.25	983	9.9	2,002	443	5.0
6	1,844	408	4.5	2,000	8,896	7,547	16,230	1,863	0.25	983	9.9	2,002	443	5.0
5	1,743	385	4.5	2,000	8,896	7,547	16,230	1,863	0.25	983	9.9	2,002	443	5.0
4	1,963	434	4.5	2,000	8,896	7,547	16,230	1,863	0.25	983	9.9	2,002	443	5.0
3	1,931	427	4.5	2,000	8,896	7,547	16,230	1,863	0.25	983	9.9	2,002	443	5.0
2	1,926	426	4.5	2,000	8,896	7,547	16,230	1,863	0.25	983	9.9	2,002	443	5.0
1	1,825	347	5.3	2,000	8,896	8,122	15,036	2,594	0.32	706	8.4	2,002	381	5.0
													1 振横造	の計画

告示エネルギー法の (2)種めて種に発生する地量に対する相 ・建築物に作用する塑性ひずみエネル $Es = \frac{1}{2}M \cdot Vs^2 - \underline{W}_e = 9.806.3$ 表44.5	計算 新 ギー量 8- <u>11,</u> 5 損傷限	「例 En Es の算り 595.2 =	ergy b 宦 —1,788 二吸収で	alance 8.4 < 0	exan 主弾	nple 建構は塑 量の算定	!性化し : :結果(極	ない (稀地震時)
	共通	主架	损		ダンハ	《一部分		建物全体
	損傷限界時	損傷限界時の相関はく断点	弾性ひずみ	保有水平耐力	降伏点	弾性ひずみ	塑性ひずみ	エネルギー
	B di	具色層なん新力	 We	Qdui	Minipetta E del	1+10+- <u>-</u>	1+10-4-9 Webi	No.
	(cm)	6N0	04N-m)	0cN0	(cm)	(kN·m)	(kN·m)	(kN-m)
10	1.62	7 755	63.0	1 729	1.30	113	55.5	129.7
9	1.66	7,115	58.9	6,789	1.24	42.2	281.0	382.1
8	1.58	7.507	59.3	10.184	1.19	60.4	400.1	519.8
7	1.52	7,395	56.1	13,579	1.01	68.3	694.4	818.9
6	1.45	10,292	74.8	13,579	0.95	64.5	683.4	822.7
5	1.42	9,407	66.9	16.974	0.77	65.6	1,102.2	1,234.7
4	1.59	11,542	91.7	16,974	0.72	60.9	1,478.9	1,631.4
3	1.63	13.312	108.6	16.974	0.67	56.6	1.638.9	1.804.1
2	1.74	14,729	128.1	16,974	0.61	51.5	1,921.1	2,100.7
	2.18	20.157	219.3	12,618	0.68	42.8	1,888.9	2,151.1
・極稀地震時の各階層間変位および 表4.4.6 極稀地 (M	ギンパー 藪時のタ &= <u>9.80</u>	-部分の必 『ンパー部st 6.8 (kN·m)と	◇要エネル うの必要 ニなる時(レキ [*] −吸収 ミエネルギ の層間変	2量の 一吸収 形角を	算定 量の第3 算定)	2結果(o.162)
		1	告 示고 1	ドルギー	法に。	にる制調	構造の	応答評価

82/34		7	し-21木あたりの第	* 元	
ネルキ'-吸収量 <i>Es di</i> (kN·m)	設置 本数	 軸耐力 N _d ~		型性部の軸剛性 K _P	型性部の 必要平均累積塑性変形倍率 <u> 77</u> dp
174	2	1.020	(KN/mm) 225	(kin/mm) 501	91
819	4	2 002	443	983	25
1.071	6	2.002	443	983	22
1 963	8	2,002	443	983	30
2 094	8	2 002	443	983	32
3,456	10	2.002	443	983	42
4 982	10	2 002	443	983	61
5.673	10	2.002	443	983	70
6.791	10	2.002	443	983	83
0.000	0	0.000	001	700	
	Es di (kN·m) 174 819 1.071 1.963 2.094 3.456 4.982 5.673 6.791	Es di (kN·m) 本数 174 2 819 4 1.071 6 2.094 8 3.456 10 4.982 10 5.673 10 6.791 10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

高次システム化対応教育プログラム

最近の建築構造設計と 耐震・制振・免震技術-2

