資料3

科学技術·学術審議会 研究計画·評価分科会 原子力分野の研究開発に関する委員会 原子力基盤強化作業部会(第3回) H21.6.4

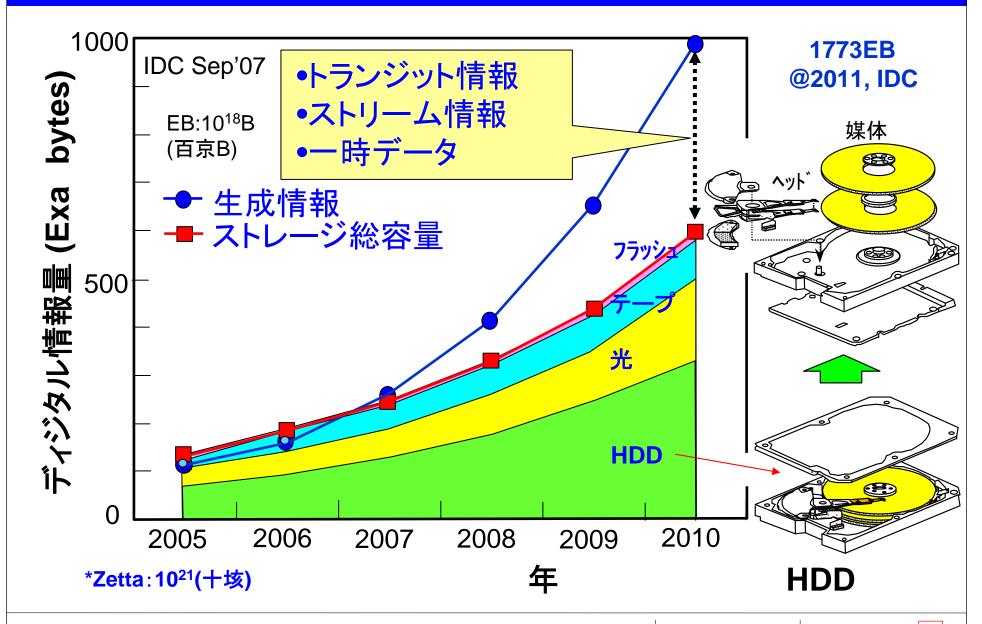
freedom to innovate

世界大競争に立ち向かうための産学官連携

-NEDO*/ASET**-PJにおける産学官連携活動事例-

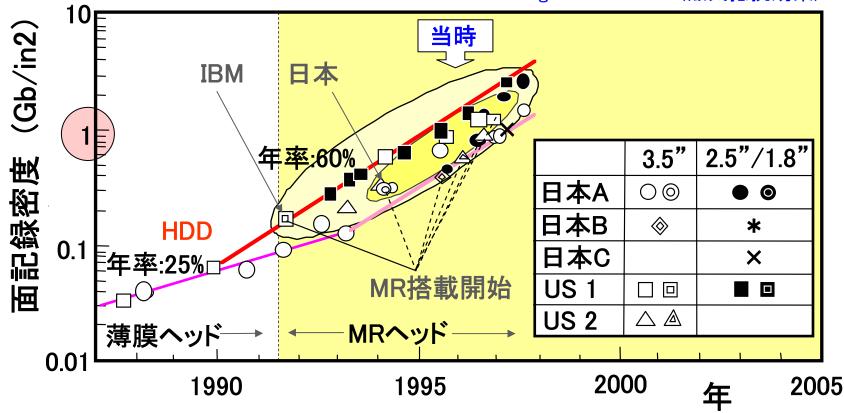
磁気ディスク装置(HDD)における 超高密度磁気記録技術の研究開発と実用化('96/02~'01/03)

2009.6.04


(株)日立製作所 研究開発本部 主管研究長 城石 芳博

NEDO フォーラム(2005.9.28) 東北大学 電気通信研究所 中村 慶久 東北学院大学 エ (元ASET第二研究部兼富士通) 山口 一幸 日立グローバルストレージテクノロジーズ 城石 芳博 での発表をベースに加筆

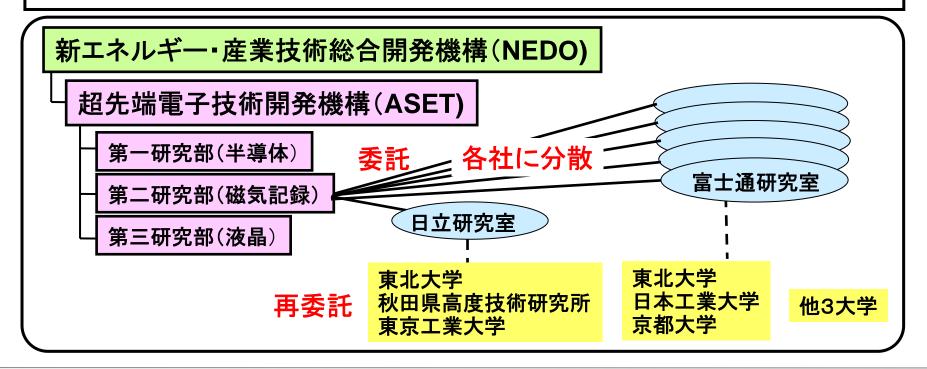
HDDとその役割 -生成情報量と保存可能な容量-



危機意識:MRヘッド実用化の遅延

HDD関連の磁気記録技術は、情報処理、情報伝達分野の中核となっていたが、産業技術力では立ち遅れ。 (例) MR*ヘッド実用化で日本はIBMに3年以上の大幅遅延。 記録密度向上(年率25→60%)に追従できず。

*MR: Magneto-Resistive(磁気抵抗効果)


優位技術を核に40Gb/in²超高密度へ挑戦

垂直磁気記録

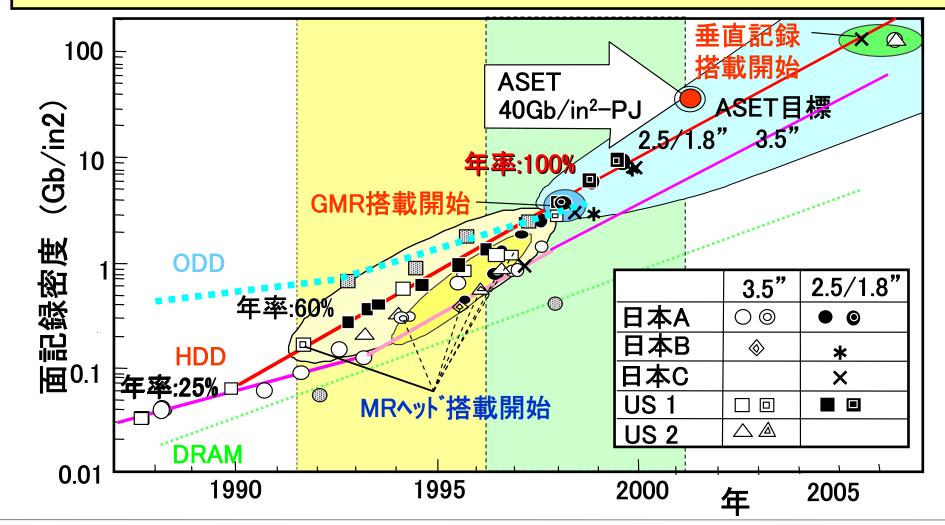
1977年 岩崎俊一東北大学教授(当時)による基本原理の提唱 1979年 単磁極型垂直ヘット、二層膜媒体を用いた検証実験

東北大学電気通信研究所 中村慶久教授 秋田県高度技術研究所 大内一弘所長

運営例:ロードマップ共有と研究開発分担

			←	NEDO/	ASET -	—	40Gb/	in²製品	H11.03.	24 ストレージ技術委員:
項目年			2000			<u> </u>	1	2005	ı	2009
媒体	磁性膜	構造		面内配	向/グラニ	:1 7		垂直配	向	熱アシスト
		プロセス	DCマク	゛ネトロン			I	ベルキ 制御		単原子制御
	保護膜/ 潤滑膜				<u>ッタ カーホ゛</u>	ソ		PCV	/D-C	
			液体潤滑膜					単分子・固体潤滑膜		
	基板•欠陥		メカニカル	テクスチャ		レーザン	ーンテクスチ	†		超平滑
	再生	磁性	MR		<u>GMR</u>		鏡面反	射	T	MR
ヘッド	素子	構造		横型					縦	型・引込型
	プロ	セス	g線				i線		K	rF/電子線
	記録素子		NiFe			FeNi		FeNiP/多層?		
	スライタ・/ サスヘ゜ンション		ナノ		ピコ		フェムト		プレー	ナ/一体型
			ワイア/(COC	ICS/CO	OC	CO	S	マイクロ	
信号処理			PRML	EPRM	L ME	2 PRML	_/ターホ゛	垂直力	式	次世代ターボ
位置決め			VCM STW			ミリアクチュエータ			マイク 埋 d	プロアクチュエータ め込みサーホ゛
基盤技術			MFM スピン			スピンSI	EM	スピ	ン偏極の	STM

黒字:周辺技術、 赤字:研究対象技術(基盤、将来もカバー)


CVD: Chemical Vapor Deposition, MR: Magneto-Resistive, GMR: Giant Magneto-Resistive, TMR: Tunneling Magneto-Resistive, ICS: Integrated Circuit Suspension, COS: Chip on Suspension, PRML: Partial Response Most Likelihood, EPRML: Extended PRML, ME2PRML: Modified E2PRML, VCM: Voice Coi; Motor, MFM: Magnetic Force Microscopy, SEM: Scanning Electron Microscopy, STM: Servo Track Writer, STM: Spin Polarized Tunneling Microscope

成果: GMRヘッド、垂直記録の早期実用化 Inspire the Next

GMRヘッド、垂直記録の早期実用化

- ・日本はGMRヘッド実用化でキャッチアップ(数ヵ月以内)、2.5"HDD世界シェアも大幅アップ(40→60%)
- ・垂直磁気記録実用化では日本が約1年先行、HDD業界をリート*

企業戦略からみた産学官連携の考え方

社会の変化

産業競争力強化による 国家経済の持続的な発展

基幹事業

新事業 出

産業界の役割

技術立国 先端 基盤技術 、官のリード

破壊的 技術

深いレベル の知識蓄積

画期的 な幾明

産業技術全体を支える知的基盤の構築 人類の「知の創造」

科学の進歩

大学への期待

PJ運営で有用であった要素

現場主義に基づく産学官連携PJ推進

- ・産の事業存続への強い危機意識 "千三つ"への挑戦 独創的技術の実用化による差別化 産学官連携への強い期待:外部資源(深い技術、人材、資金、 設備)活用による技術戦略のレバレッジ
- ・学主導による深みある最先端技術研究開発と基盤強化 伝統と知的基盤の活用 変化の根源に迫る科学、Whyへの挑戦
- ・官主導による選択と集中、裾野の拡大 現場を熟知した管理 計画と個別レビュー 各社が強味分野へ特化、幅広いR&Dを可能にする仕組み シナジー発揮 分散研による、バランス良い競争と連携

PJ運営で有用であった要素

全体像を理解でき、かつ個別アクションを取れる仕組みの構築 親和力の有るパートナーシップ ゴールに関するコンセンサス

・「人・金・もの」の資源配分とリーダシップ バランス感覚優れたリーダによるトップダウン 新資金によるトップ人材・設備の投入 企業の高額・高度基盤設備の有効活用によるトータル開発 ・目標設定(アウトカム)と緻密なアクションプラン 協調無しでは到達しえない、極めて挑戦的な目標設定 製品(全体)を意識した要素技術(部分)開発体制 システムとしての主要目標、仕様の設定 拡張目標、基盤研究含めた幅広い目標設定 ロードマップ・研究開発計画共有化 個別ミクロマネージメント

纏め

・産学官連携による国際競争力強化

産:外部資源活用による技術戦略のレバレッジ

学:グローバルな人材育成、先端/基盤/破壊的R&D力の深耕

官:技術立国に向けた国際競争力の強化

·今後の進み方 グローバル時代の産学官連携 異分野間の融合 政策との融合 (例) SGP

イノベータのジレンマを超えて 産 産業の米に 技術経営 スピントロニクスに向けて

シームレスな科学・ 技術•経営

技術立国

PDCA

科学•工学