
持続発展型社会を先導するナノバイオ・デバイス研究拠点 ~バイオを超えるイノベーションシーズの創出・展開システムの構築~

東京大学 片岡一則

平成21年1月13日 第14回 ナノテクノロジー・材料委員会 説明資料

ナノバイオ関連研究状況

- 生体分子・細胞等の生体構成要素を、その機能を制御した状態でインテグレートする概念・方法論の創出 (分子情報生命科学)
- ・生体の構造と機能をナノスケールで理解し、その作動原理を創り込んだ ナノシステムの構築 (ナノバイオ・インテグレーション)

ナノバイオ・デバイスの学理の確立と機能実証

ナノバイオ・デバイス

クリーン・ 低エネルギー反応

高効率エネルギー変換・ 分子情報伝達系 1

地球・生態系との調和

ゆらぎ・自律制御

生体適合性

階層性-自己組織化

分子特異的認識

自己修復 自己複製

ナノバイオアナリシス
ナノバイオシンセシス

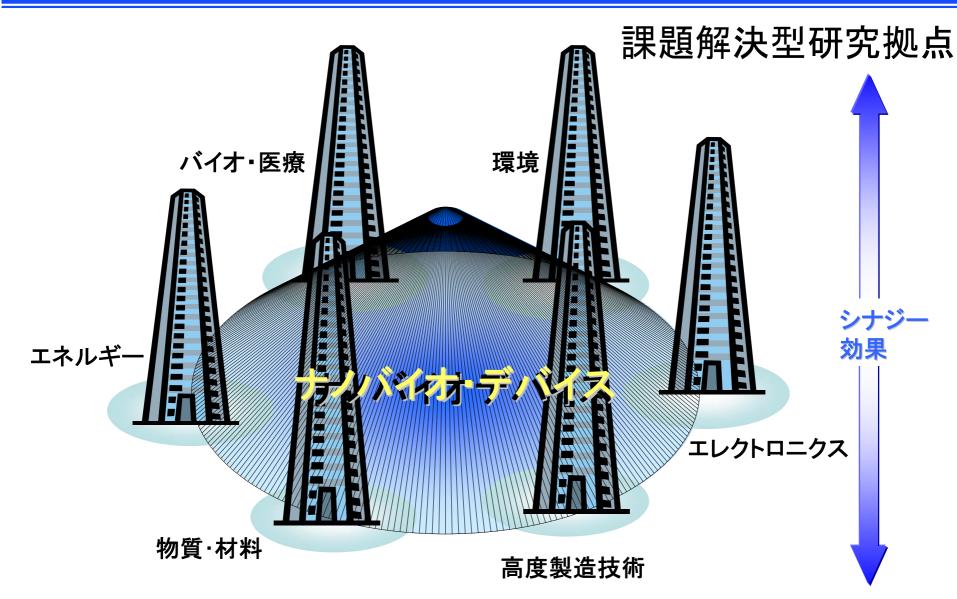
ナノバイオテクノロジー

ナノバイオ・デバイスのコンセプト

devise: [語源] de-=dis-(離れて)+ラテン語 videre(見る) 対象を外から注意深く観察する⇒「工夫する。発明する。」

device:「明確な意志や工夫の元に発明・考案された装置・方法」

ナノバイオ・デバイス:


自然が創造(create)したバイオの巧妙な機能・システムをつぶさに解析し、その原理を理解した上で、材料科学に立脚した人知(nanotechnology)を尽くした創意工夫により創製(devise)されるもの(一体化した機能システム)。それらを創り出すための行為(設計・プロセス)も含む新しい言葉として用いる。

バイオを超えるナノデバイス機能

- 生体活性型適合機能
- 地球・生態系のレメディエーション
- 気中での分子特異的認識

- 時空間を制御した自己組織化
- 高速性 高選択性分子情報処理
- 環境共役型エネルギー生成

研究拠点の形成

異分野をつなぐ基礎基盤型研究拠点

具体的な研究開発課題 (基礎基盤構築型研究拠点)

- 1) 革新的な「方法論」の確立 (バイオを理解し、評価する方法の創出)
- 2)ナノテクノロジーによる「新材料」創製 (バイオに啓発されたマテリアル創製)
- 3) 1,2)を統合・駆使した「システム」創成 (バイオを超えるナノデバイス機能の実現)

ナノバイオ・デバイス創成ロードマップ

1~5年

ナノバイオ・デバイスの基礎基盤確立

5~10年

ナノバイオ・デバイスの応用展開

______目標

ナノバイオ・デバイスの産業化

革新的な「方法論」の確立

- ▶ 生体の構造・機能を解明する 細胞・分子イメージング技術
- > 細胞・分子を操作する方法論・技術
- ▶ ナノバイオ現象の解析とシミュレーション
- ▶ ナノバイオ計測プラットフォーム開発
- ナノバイオ・デバイスの安全・信頼性
 評価技術

方法論、新材料を統合・駆使した「システム」創成

- ▶ 生体融和型診断・治療システム
- > 高選択性分子情報処理システム
- ▶ 環境共役型エネルギー生成システム
- **▶ 地球環境レメディエーションシステム**

ナノテクノロジーによる「新材料」創製

- > 生体活性型適合機能材料
- > 分子特異的認識材料
- > 自己組織化による新材料創製
- > 産業化を見据えた材料の安全性・信頼性の評価
- > 目的環境下で機能するための材料 構造の適正化

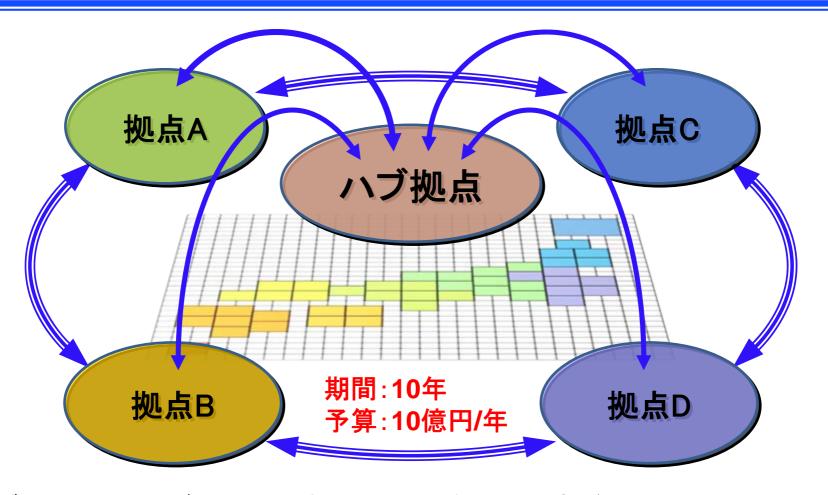
医療•健康

- ・超早期診断用システム
- ・診断治療一体型ナノ医療システム
- ・生体機能修復・強化システム
- ・生体反応電池搭載埋込みデバイス
- •生涯型人工臓器
- ・動物実験代替システム

情報・環境・エネルギー

- ・脳型演算システム
- ・自己診断・修復型ナノマシン
- ・低環境負荷製造プロセス
- ・人工光合成システム
- ・バイオマイニング・資源生成
- ・バイオ燃料・バイオ電池

ナノバイオ・デバイスを核とした研究展開


時代の要請に応えるイノベーションシーズ展開システム(PULL)

新技術・新産業展開のナビゲーション効果

社会還元を見据えたイノベーションシーズ創出(PUSH)

Hub-Network 型拠点

ハブ拠点は、るつぼ型共同研究拠点として全国的に広がるネットワークの中軸となり、ナノバイオ・デバイス研究と人材育成を効率的に推進。

課題解決型研究拠点の既存のポテンシャルとの連携に基づくAll-Japan体制の構築により、大きな費用対効果と異分野や産業へのスムーズな展開が可能。

ネットワーク拠点(大学・研究機関・企業)

脳型演算 システム。 生体反応 雷池 協調と競争による研究の進化 るつぼ型利用形態 ハブ拠点

個別的利用形態 共同利用施設

3のし サ 本 代

知識交流の場⇒横断的分野の人材育成

グローバルな視点での新学問領域・新産業の創出

持続発展可能な未来社会を目指して

医療・健康

低環境負荷 生産技術

クリーンエネルギー

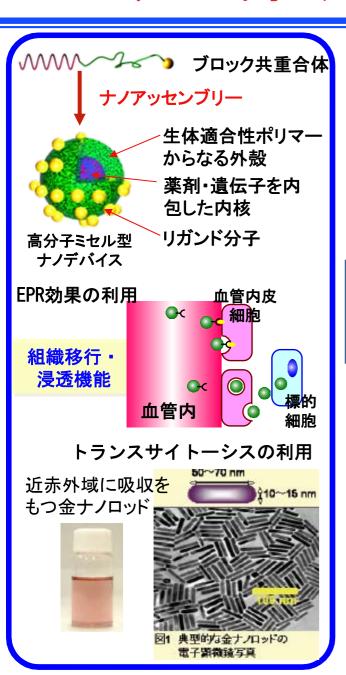
技 術 イノベ ーション

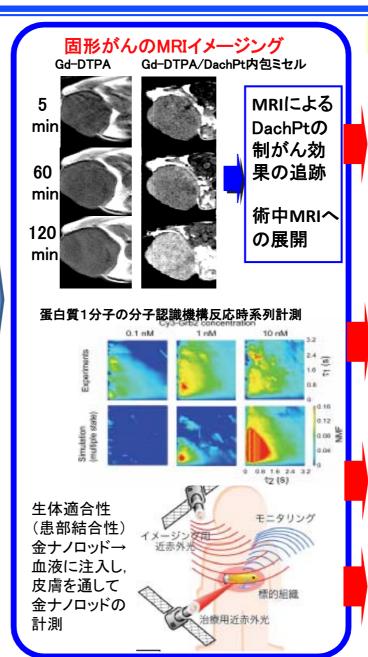
ナノバイオ・デバイス創成ーナノテクノロジーでバイオを超える一

ハブーネットワーク研究拠点形成によるナノバイオ学術基盤の底上げ ナノバイオを機軸とするDevising Spirit 人材・資源・知識の統合からの創発

補足説明資料

バイオを理解し、評価する方法の創出


- 生体の構造・機能を解明する細胞・分子イメージング技術
 - →非侵襲・非標識に生体分子・細胞機能検出する技術の開発
- 細胞・分子を操作する方法論・技術
 - →生体内分子の挙動を一分子単位からコントロールする方法論の確立
 - →非侵襲・非修飾に細胞内・外に存在する分子を操作・検出する技術 の開発
- 生命原理の解析とシミュレーション
 - →フィジカルサイエンスを駆使した、バイオ系の理解
 - →生体内分子の反応拡散系解析


バイオに啓発されたマテリアル創製

- がんや各種難治性疾患を治療するマテリアル
 - →ウィルスに匹敵する遺伝子·薬剤送達マテリアル
- 再生医療を可能にするマテリアル
 - →生体組織に近い強度特性を持つ生体適合性構造材料の開発
 - →細胞の分化を高度に制御する再生医療用材料・培養装置の開発
- 生命原理に学ぶ新規有用マテリアルの創製
 - →クリーンエネルギー、バイオ環境浄化に関わる酵素の進化技術
 - →バイオミネラリゼーションによるナノ構造体の作製
 - →自己清浄、自己修復の機能を有するマテリアル
- 生命原理に啓発されて造られる化合物・マテリアルの評価・解析
 - →生体や社会に及ぼす安全性の評価・解析

バイオを超えるナノデバイス機能の実現

- ・ 従来の微細加工技術の限界を超える製造技術 →制御された自己組織化を利用したデバイスプロセス
- 生物に学んだ情報処理デバイス→確率共鳴型演算デバイス、脳型情報処理デバイス
- 生物に学んだエネルギー変換デバイス
 - →光に応答して物質を生産、あるいは破壊(浄化)するナノシステム への展開(人工光合成とその拡張)
- 生体の損なわれた機能を補うデバイス
 - →ブレイン・マシン・インターフェイス等の生体埋め込み計測、 治療デバイス、人工網膜etc.

医用デバイス: DDS

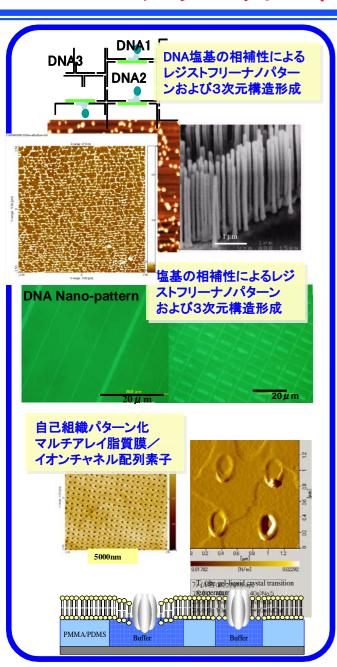
癌の早期検出や治療 効果の確認のためのイ メージングデバイス

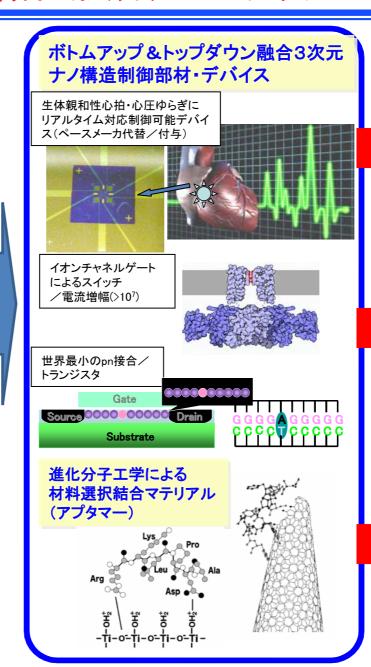
癌をはじめとする難治性 疾患の治療ナノマシン

細胞機能の改変、 分化誘導するデバイス

エネルギー分野

化学反応物質放出の 時空間制御による 高機能ナノバッテリー


IT分野


自己組織化制御配列による超高密度メモリ

環境分野

超撥水性付与による セルフクリーニング塗装

プログラム自己組織化形成ナノマテリアル・デバイス

医用デバイス

生体親和性に優れた永 久埋め込み型バイオ情 報処理デバイス

細胞機能の改変、分化 誘導の時間制御を可能 にするデバイス

IT分野

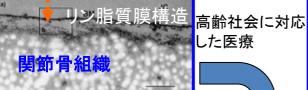
自己組織化制御配列 による超高密度メモリ >100T~1PB/inch²

無電解めっきによる ナノパターニング 線幅 ~5nm配線

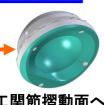
環境低負荷型クローニング自己修復・複製プロセス(バイオエ場)

環境・エネルギー分野

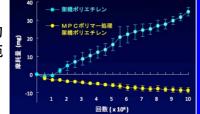
コアシェル3次元構造に よる時空間制御された高 機能ナノバッテリー


高性能水素貯蔵(燃料 電池)ナノマテリアル

生体構造に啓発された超親水・潤滑バイオ界面


生体関節

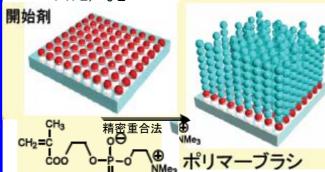
- 高潤滑
- 耐壓耗特性
- 力学的緩衝作用


した医療

組込

人工関節摺動面へのリン脂質 ポリマーのナノグラフトによる 生体膜類似構造の構築 超親水,高耐久性,高潤滑

- 長寿命化に成功
- 臨床治験の実施


超潤滑バイオ界面原理の提案 ポリマー高密度ブラシによる界面での

水の環境制御

生体構造に啓発された高機能 バイオ界面

荷雷を持つポリマーブラシの構築

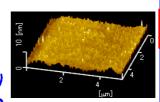
幅広い材質に固定化可能: 金属(Au, Ag, Pt, Cu) 酸化物(TiO2, SiO2, Al2O3) 高分子材料(PS, PE, PET, PTFE) など

医用デバイス

低侵襲埋め込み型運 動器系医用デバイス

血液ポンプなど高回転 数と安定性が求められ る医用デバイス

血管内マイクロカ テーテルのように生 体組織との低摩擦が 必要な医用デバイス


エネルギー分野

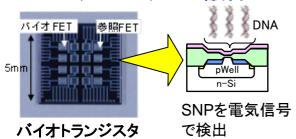
回転・スライド運動など においてエネルギーロス を防ぐ動力システム

分子潤滑機構の活用技術

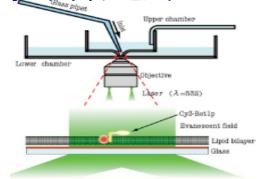
高密度グラフトポリマー鎖 水の接触角<10° 動摩擦係数<0.005

IT分野

高安定・高速オイルレ スメカノスイッチング システム


環境分野

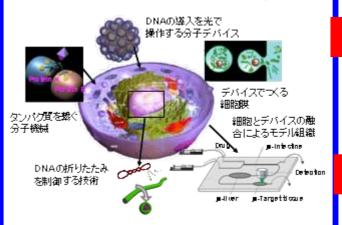
自浄環境センサーや環境 対応型防汚表面処理塗料



生体分子・生体と融合するデバイスシステム

DNA・有機高分子と エレクトロニクスの融合

イオンチャネルセンサー


生体とデバイスの融合

マウスの頭部に埋め込み、長期にわたり 脳神経細胞の活動を2光子顕微鏡で観察 可能にし、精神疾患の原因を探求

人工細胞デバイスの創製

生体分子の機能を保持しつつ、人工ナノマシンと統合させる化学合成、デバイス技術

確率共振型ニューロン素子

細胞内タンパク輸送装置の分子実体の解明を目 指す。

膜タンパク複合体の 「自己組織化原理」 を解明する。

タンパク輸送の原理を解明することを通じて、生体 膜上でのタンパク複合体の自己組織化原理、機能 発現機構を解明する。

医療・創薬応用

人工細胞、モデル化組織 デバイスによる高効率薬 物スクリーニング

病理診断デバイス

生体の損なわれた機能 を補うデバイス

エネルギー分野

酵素や光合成を利用する 高効率エネルギー製造シ ステム

IT分野

細胞ネットワークのシグナ ル伝達を利用する演算素子

生体ーIT機器を繋ぐ直感 的情報インターフェイス

環境分野

環境浄化を可能にする 酵素分子改変システム